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Strictly local growth of Penrose patterns* 
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Abslmet. N o n - l d t y  in the seme of Penrose does not imply that no loul growth algorithm 
can exist which geneme global tilings in XI aperiodic species. The unsuccessful m h  (until 
now) for Ihe species of Penrose tilings (Sp) provided the motivation to develop growth algorithms 
which accept violation of m c h i n g  rules. These are described and statistical data are given. 

1. Introduction 

In 1988 Onoda etal (cf 151) published an algorithm for the growth of perfect Penrose tilings 
(PFT) by first building an imperium of a given patch (cluster) using local decisions and then 
adding a fat tile at a special edge of the imperium. In a reply JariC and Ronchetti in [7] have 
pointed out that this should not be called a local growth algorithm, as the decision of whether 
a given patch is an imperium or not is surely not local, because one has to investigate the 
whole surface of the patch, an opinion which is supported by Olami [IO, 1 I]. We call the 
suggested algorithm a global-local algorithm, because the decision where the next tile is 
added is a global one, whereas it is locally decided which tile is added. It is possible 
to approximate the algorithm by Onoda et al using probabilistic decisions. If an edge is 
forced, the probability of adding a tile is unity. If not, the probability is zero unless it is a 
special type of edge, for which the probability is as small as desired. Such an algorithm is 
local-local, producing defect Penrose tilings. For more details see [7,121, Also in the latter 
paper the importance of special defective initial patches which have an imperium covering 
the whole plane is shown, so the non-local part of the algorithm by Onoda et a1 is not 
necessary. We have to contradict the common opinion, which Penrose has actually proved 
in [6], that a local-local algorithm for PFT is impossible. After a long and unsuccessful 
search for such an algorithm we too believe that it is impossible, but the property of Penrose 
non-locality defined according to [6] does not exclude such an algorithm. In a second part 
we present several algorithms for the growth of defect Penrose tilings (DPT), in which we 
have tried to make the first term local in our sense of a global-local algorithm to truly 
local-local algorithms. A quite different but rather general approach to the problem can be 
found in the paper by Moody and Patera [14]. 

2. Non-locality 

A species S = S(7,  W )  is the set of all global faceto-face tilings whose tiles belong to 
the family 3 of prototiles under the building restriction or method M. A species S is called 
aperiodic, if and only if all tilings in S are non-periodic. 
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According to the classification of Penrose we shall call a patch correct if it appears in 
a tiling of the actual species, otherwise it is said to be not correct. Trying to generalize 
the so-called non-local property, which Penrose showed to hold for the species Sp of all 
perfect Penrose tilings (PUS) 161, one might suggest the following definition. 

Definition I (NLP’).  For every p > 0 there exists a correct patch A and two tiles TI and 
Tz with dist(c, T,) > p such that A U (TI} and A U {q) are both correct patches but 
A U [TI, Tz] is not correct. 

But the species given by the crystallographic tiliig in figure I would be non-local by 
this definition, as you obtain a correct patch adding the tiles TI or Tz in figure 2, but if the 
(arbitrarily large) number of tiles in between is odd the patch containing TI and Tz is not 
correct. 

.... 
, .._.. I 

Figure 1. A crystzllogrnphic tiling. 
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Obviously, a Penrose-non-local species generated with local matching rules is non-local 
in this sense. 

But non-locality does not imply that it is impossible to find any local-local algorithm 
for tilings of such species defined by local matching rules. Non-locality only excludes that 
the local matching rules automatically avoid wrong choices. It might be possible to develop 
a growth algorithm including a catalogue of local rules, however complex this might be, 
defining the choices to be made under certain local conditions. 

In the tiling of figure 1 you can shift each layer 
of rectangles by one square without changing the rest of the tiling. Now randomly 
choose for every layer whether to shift or not. This yields a species with infinitely many 
different local isometry classes. It is obviously non-local according to each of the previous 
definitions, but one could easily find local-local algorithms which grow perfect tilings of 
this species. 

Another (not so monster-like and three-dimensional) example is the aperiodic species of 
all monohedral tilings consisting of the ‘ S a  tile’. The SCD tile was successively developed 
by Schmitt and Conway, and this paper’s last author [13]. Although no SCD tiling permits 
any translation at all, they are built up of ‘shiftable’ layers and arguments for non-locality and 
local-local algorithms work analogously. It should be noticed that there are homogeneous 
SCD species, e.g. species consisting of only one local isometry class. 

3. Growth algorithms for defect Penrose tilings 

Any growth algorithm can be described according to the following two basic questions: 
‘where?’ (which part of an actual patch does grow?) and ‘whar?’ (how will the 
patch be continued?). For example the algorithm of Onoda er a1 151 gives an answer 
to where: (i) choose randomly a forced edge, (ii) take a special edge at a corner of a 
patch with an unforced surface (sorely a global answer). And to what: (i) add the forced 
tile, (ii) add a fat rhomb legally (a local answer). Therefore we call this a ghbal-local 
algoriihm. 

As mentioned above, we strongly believe that a local-local algorithm is impossible for 
the species S p .  So one might say that we started at the other end of the scale by trying to 
develop rather simple growth algorithms which generate defect Penrose tilings (DPT) which 
already have a relatively low frequency of defects, algorithms which do not run into dead 
ends. We were interested in which set of defects was necessary to enable such algorithms 
to work. Onoda et al in [51 and JariC and Ronchetti in [7] agreed that a study of defects 
occuning (naturally?) would be useful. So our algorithms only accept defects out of a 
small set of specially selected kinds of defects in Penrose tilings. We do not allow a mixing 
up of the two classes of vertices into which the set of vertices of a Penrose tiling can be 
subdivided (see, for example, [Z]), but we accept edges where two oppositely oriented edges 
of tiles (having the same vertex class at each end) meet. With these so-called green edges 
we build twelve defective vertex stars and only these phason defects were allowed in our 
growth algorithms, and only when none of the eight different vertex stars occurring in PPTS 
fitted (see figure 3). (As mathematicians we prefer the geometrically simplest tiles and so 
all our growth algorithms work on Penrose tilings consisting of Robinson triangles with 
edge lengths I ,  r - ’ ,  r ( r  := f + id).) 

In contrast to Onoda er el our growth algorithms do not select an edge on the surface 
and add a tile, but select a vertex on the surface and complete the vertex star. As to 
the what question, we try to minimize the number of green edges at the vertex itself and 
the two neighbouring vertices on the surface using a list of priorities for vertex stars for 

One example is the following. 
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F i p  3. Development of the surface and distribution of green edges in a patch grown with 
the 'oldest' algorithm. 

16(16) 17 (17) 18(18) 19 (19) 20 (20) 

Figure 4. The permitted vertex stm. 

all fitting vertex stars (legal and defective), which force the minimal number of green 
edges. This is not changed for any of the listed algorithms. For the list of priorities, 
see the numbers in brackets in figure 4. Of all fitting vertex stars with minimal number 
of forced green edges we choose the one with the lowest number. (E this did not force 
the position of each tile from the completed vertex star, it was chosen randomly). For 
the legal vertex stars the priority was chosen according to the volume of their acceptance 
domain in the orthogonal space. The method inspired by Baake and Joseph in [9] to define 
via representation in orthogonal space an elastic energy measure for defective vertex stars 
unfortunately does not work in our context, because only two defective vertex stars would 
cause energetic costs. The theoretical 'acceptance domains' of most defective vertex stars 
are points or lines and therefore would have measure 0, unlike the defective vertex stars 
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Figure 5. Development of the surface and distribution of green edges in a patch grown with 
the 'nearest' algorithm. 

Figure 6. Development of the surface and distribution of green edges in a patch grown with 
the 'line' algorithm. 

Figure 7. Development of the surface and distribution of green edges in a patch grown with 
the 'concave' algorithm. 

in the octagonal tilings considered in the work mentioned above. As a matter of fact a 
change in the priority list did not have any great effects on the global structure of the 
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‘oldest’ ‘nearest’ 

!n 

‘concave’ 
pwfludm 

Figure 8. The fluctuation in onhogonnl space with respect to the radius for a perfect Penrose 
tiling and for patcher grown by the different algorithms. 

grown patch or on the number of defects in it. Again we would like to point out that 
the aim of this paper is to find out how many defects and how many types of defects 
have to be accepted if simple local-local algorithms are to lead to tilings of the whole 
plane. 

An essential question concerning growth algorithms is if shifts of the strip are bounded 
in the orthogonal space, which would reveal that the patterns are quasicrystallographic 
rather than crystallographic or amorphous. We hope that for two of our algorithms these 
fluctuations are bounded, but unfortunately we are not able to prove this. (As a consequence 
the broadening of peaks in the Fourier spectrum would be bounded, too, as is stated in 
[3,10]. Actually, neither could not prove that their algorithms exclude unlimited shifts of 
the strip either, although they seem to be very sure about this.) In figure 8 the growth of 
the acceptance domain in the orthogonal space is shown, as it depends on the diameter of 
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the patches. Only in the case of the ‘oldest’ algorithm does it seem to be quite obvious that 
shifts are unlimited. 

The where question becomes important when growing large patches, because 
uncontrolled growth can lead to holes. The existence of choices (or the property of 
non-locality) means, almost inescapably, that two parts of a patch, which have grown 
into different directions, do not~fit if they grow together again. So it is reasonable 
to try to keep the patch ‘convex’. The first, and not new, idea to achieve this 
has been inspired by the physical idea that the time between the moment when an 
atom has settled on the surface and the moment when it is surrounded by others is 
approximately the same for all atoms. It is a matter of taste to call this algorithm global or 
local. 

Algorithm I (‘oldest’). First make a list of all vertices on the surface. 
Choose the vertex at the top of the list and complete it with the minimal number of 

green edges and according to the priority list. Add the newly generated vertices at the 
bottom of the list and remove all vertex stars from it which have now been completed. 

One feature of this algorithm is that the outer shape of the grown patches mostly looks 
like a decagon with edges perpendicular to the orientation of the tiles’ edges. This decagonal 
shape was also built by an algorithm for atomistic growth of decagonal quasicrystals of Szeto 
and \Vag [SI, which is not too surprising, since our ‘oldest’ algorithm can be considered 
as a further development of their ‘layer-by-layer’ idea, using a minimum of memory. The 
patches built by their algorithm (or a previous one by Minchau et al in [4]) or ours look 
rather like a multi-twining crystal, so we expect the fluctuation of the strip in orthogonal 
space not to be bounded. 

The canonical geometric solution to the convexity problem is realized in the second 
algorithm: 

Algorithm 2 (‘nearest’). Choose the vertex on the surface which is nearest to the origin, and 
complete it with the minimal number of green edges and according to the priority list. 

This surely is a global-local algorithm, because it needs an origin (globally defined). 
On the other hand it is more local than the algorithm of Onoda et al ,  as for one vertex 
the distance from the origin does not change, whereas the property of being unforced does 
change while growing. 

Trying to make this ‘nearest’ algorithm more local, we came to the idea of approximating 
a part of the circle deciding which vertex is the nearest by the straight line approximating 
a part of a fixed size of the surface. Choosing this part of the surface randomly leads 
to the problems discussed above. To avoid this problem we choose the part walking 
around the surface with a fixed angle of &s-’. This guarantees a strongly balanced 
distribution of the parts on the surface, while keeping the local situation near to that of a 
real random choice. Given such a local part of the surface, we detected the vertices ‘nearest 
to the origin’ by their position relatively to the straight line approximating this part of the 
surface. 

Algorithm 3 (‘line’). Define an orientation of the surface of the given patch and choose one 
starting direction from the origin. 

Let EO be the vertex on the surface which is next to the beam into the chosen direction. 
Call the next six free vertex stars in positive direction E, ,  . . . , E6. Find the line g for 
which the sum of its squared distances to Eo, . . . , E6 is minimal. To find the ‘inner side’ 
of g, define s to be the centre of gravity of the second corona of E3 and the vertices on the 
same side of g as s to be inner vertices. Now gradually complete the inner vertices out of 
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El ,  . . . , Es with the maximal distance to g as long as the distance is greater than 0.2. This 
completion is done according to the same rules as in the other algorithm. Afterwards rotate 
the direction by 2as-’ (and iterate the procedure). 

As it is possible for small starting patches for this algorithm to stop (because, according 
to it, no vertex Eo causes a completion), we decrease the value of 0.2 for every turn of the 
algorithm without a completion, and set it back to 0.2 as soon as one vertex was completed. 
But this is only necessary for small patches. Starting with patches of a radius greater than 
16, it is not necessary to use this additional rule. 

This algorithm is almost a local-local algorithm as it uses an origin (global), but only 
in order to get a very strongly balanced dishibution on the surface of the patch. 

The following algorithm is local-local in the strongest sense. 
Algorithm 4 (‘concave’). First choose an orientation of the surface and arbitrarily a free 
vertex star, called EO. 

Let E l ,  EZ and E, be the three successive neighbours of EO in positive orientation. 
Complete EO according to the same rules as in the other algorithms, if and only if the 
surface is strictly concave at this vertex. Now go back from Es on the-eventually new- 
surface to the next but one vertex and call it Eo (and iterate the procedure). 

If there was no vertex star completed within 100 steps, change the condition ‘strictly 
concave’ into ‘concave’, until one vertex star is completed. 
The least local part of this algorithm is the decision of whether there was no completion 
during the last 100 steps. Hence this is a local-local algorithm. 

4. Conclusions 

Growing defective Penrose patterns without controlling the shape of the growing patch 
cannot work. However, we have shown that it is possible to steer the growth by strictly 
local d e s .  The frequency of defects in our grown tilings is relatively high, because we 
always try to use the simplest algorithm of one kind to show its characteristics. The 
frequency can be decreased easily by taking some more complex rules for the choices of 
the vertex star, which is chosen from the permitted ones (e.g. make a list of possible local 
surfaces and say what to add in every case). It is also possible to prefer forced vertices in 
a local part of the surface. Enlarging this part step by step yields a continuous transition to 
an algorithm like the one of Oncda et a1 with defect-frequency zero. 

Most of the once-built defects appearing in the tilings can be ‘moved‘ by flips, i.e. by 
reflecting a hexagon of tiles. Hence it is possible to discard a high percentage of all defects 
by cancelling two defects in the same Conway ‘worm’, or moving them through the surface 
out of the patch. So we assume that if a rule for local moving of defects is built into the 
algorithms, the frequency of defects could be essentially decreased. 

We have worked bard in preparing a transfer of the above algorithms to the three- 
dimensional case, especially for application on the species of [ A ,  B.  C,  K]-tilings. Since 
our grant has been cut down drastically we cannot pursue this task any longer. But we still 
think it would make sense. 

G van Ophuysen er a[ 
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Appendix. 

Table Al. Basic data of Le grown patches 
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Algorithm Oldest Nearest Line Concave 

Number of grown patches 70 70 70 70 
Max. number of vmiex completions ' 38000 400W 40000 30000 
Percentage of defect edges 1.804% 0.612% 0.540% 0.468% 
Percentage of defect vertex s m  10.276% 3.591% 3.212% 2.821% 

Sums over all grown patches: 
Vertex completions 222000 234000 228000 212005 
Choices 22963 12301 8915 6 305 
Inner edges 766906 771666 738662 700956 
Defect edges 13833 4 722 3 990 3 278 
Inner vettices 249431 252279 242070 229857 
Defect vertex stars 25632 9 060 7 776 6485 
Tiles 517545 519457 496662 471 169 

Number of types of defect vertex stars IO 6 8 8 

Table Az. Frequency of the veaex stars in the grown patches and in a perfect Penrose tiling. 

Vertexstar Oldest Nearest Line Concave Perfectt 

1 33.386% 36.569% 37.011% 37.252% 38.191% 
2 18.459% 22.024% 22.118% 22.271% 23.607% 
3 13.793% 14.117% 14.286% 14.546% 14.590% 
4 10.423% 9.854% 9.480% 9.135% 9.017% 
5 4.522% 4.422% 4.828% 5.185% 5.573% 
6 3.528% 3.738% 3.752% 3.780% 4.033% 
7 5.584% 5.180% 4.431% 3.981% 3.444% 
8 0.028% 0.506% 0.823% 1.028% 1.540% 
9 

IO 
I I  
12 
13 
I4 
15 
16 
17 
18 
19 
20 

0.529% 0.002% 0.031% 0.017% 
O.OOl% 0.002% 0.053% 0.034% 
4.101% 
0.111% 
4.948% 
0.0004% 
0.000% 
O.OW% 
0.575% 
0.002% 
0.005% 
0.004% 

1392% 
0.394% 
1.762% 
0.000% 
0.039% 
O.OW% 
0.000% 
O.OW% 
0.000% 
0.000% 

1.327% 
0.244% 
I .537% 
0.000% 
0.019% 
0.0004% 
0.001% 
O.WO% 
0.000% 
O.WO% 

1.276% 
0.107% 
1.384% 
O.WI% 
0.002% 
0.000% 
0.000% 
0.001% 
0.000% 
O.WO% 

t According to [I]. 
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